
A Graph Based Backtracking Algorithm for Solving

General CSPs

Wanlin Pang1 and Scott D. Goodwin2

1 QSS Group Inc., NASA Ames Research Center, Moffett Field, CA 94035
2 School of Computer Science, University of Windsor

Windsor, Ontario, Canada N9B 3P4

Abstract. Many AI tasks can be formalized as constraint satisfaction
problems (CSPs), which involve finding values for variables subject to
constraints. While solving a CSP is an NP-complete task in general,
tractable classes of CSPs have been identified based on the structure of
the underlying constraint graphs. Much effort has been spent on exploit-
ing structural properties of the constraint graph to improve the efficiency
of finding a solution. These efforts contributed to development of a class
of CSP solving algorithms called decomposition algorithms. The strength
of CSP decomposition is that its worst-case complexity depends on the
structural properties of the constraint graph and is usually better than
the worst-case complexity of search methods. Its practical application is
limited, however, since it cannot be applied if the CSP is not decompos-
able. In this paper, we propose a graph based backtracking algorithm
called ω-CDBT, which shares merits and overcomes the weaknesses of
both decomposition and search approaches.

1 Introduction

Many AI tasks can be formalized as constraint satisfaction problems (CSPs),
which involve finding values for variables subject to constraints. While con-
straint satisfaction in its general form is known to be NP-complete, many CSPs
are tractable and can be solved efficiently. Much work has been done to iden-
tify tractable classes of CSPs based on the structure of the underlying constraint
graphs and many deep and insightful results have been obtained in this direction
[12, 1, 15, 8, 6, 9, 28, 29, 3, 17, 18, 21, 10, 20, 24, 25]. A serious practical limitation
of this research, however, has been its focus on backtrack-free conditions. Obvi-
ously, a CSP which has backtrack-free solutions is tractable, but a tractable CSP
does not necessarily have backtrack-free solutions. In practice, many researchers
have tried to improve the efficiency of finding a solution by exploiting the struc-
tural properties of the constraint graph. A class of structure-based CSP solving
algorithms, called decomposition algorithms, has been developed [14, 16, 4, 7].
Decomposition algorithms attempt to find solutions by decomposing a CSP into
several simply connected sub-CSPs based on the underlying constraint graph and
then solving them separately. Once a CSP is decomposed into a set of sub-CSPs,
all solutions for each sub-CSP are found. Then a new CSP is formed where the
original variable set in each sub-CSP is taken as a singleton variable. Usually

the technique aims at decomposing a CSP into sub-CSPs such that the number
of variables in the largest sub-CSP is minimal and the newly formed CSP has a
tree-structured constraint graph. In this way, the time and space complexity of
finding all solutions for each sub-CSP is bounded, and the newly formed CSP
has backtrack-free solutions. The complexity of a decomposition algorithm is
exponential in the size of the largest sub-CSP. The class of CSPs that can be
decomposed into sub-CSPs such that their sizes are bounded by a fixed number
k is tractable and can be solved by decomposition in polynomial time. This is
the strength of CSP decomposition. A fatal weakness of CSP decomposition,
however, is that the decomposition is not applicable to solving a CSP that is not
decomposable, that is, its decomposition is itself. A secondary drawback of CSP
decomposition is that, even if the CSP is decomposable, finding all solutions for
all the sub-CSPs is unnecessary and inefficient.

In this paper, we propose a graph based backtracking algorithm, called ω-
CDBT, which shares the strength of CSP decomposition and overcomes its weak-
nesses. As with CSP decomposition, ω-CDBT decomposes the underlying con-
straint hypergraph into an acyclic graph. Unlike CSP decomposition, however,
ω-CDBT only tries to find one solution for a chosen sub-CSP, which is not sep-
arated from other sub-CSPs, and then tries to extend it to other sub-CSPs.
The ω-CDBT algorithm uses a constraint representative graph called ω-graph
[24, 22, 25]. The complexity of ω-CDBT is exponential in the degree of cyclicity
of the ω-graph. Nevertheless, the significant contributions of this research on
combining search with constraint structure are: 1) The class of CSPs with the
property that the degree of cyclicity of the associated ω-graph is less than a fixed
number k is tractable. As shown in [24, 22, 25], given a constraint hypergraph,
the degree of cyclicity of an ω-graph is less than or equal that of the constraint
hypergraph. Therefore, the class of CSPs that is ω-CDBT solvable in polynomial
time includes the class of CSPs that is solvable in polynomial time by other de-
composition algorithms such as hinge decomposition [16]. 2) For CSPs that do
not have the above mentioned property, ω-CDBT still has a better worst-case
complexity bound than other decomposition algorithms such as hinge decompo-
sition [16], which in turn has a better worst-case complexity bound than search
algorithms that do not exploit constraint structure. In both cases, ω-CDBT also
has advantage over decomposition algorithms in that it finds only one solution
for each sub-CSP which saves space and time. 3) In cases where CSPs are not
decomposable, decomposition algorithms are not applicable whereas ω-CDBT
degenerates to CDBT [23] which is still a practical CSP solving algorithm.

The paper is organized as follows. We first give definitions of constraint satis-
faction problems and briefly overview constraint graphs and CSP decomposition.
We then present the ω-CDBT algorithm, analyze its complexity, and compare
it with decomposition algorithms.

2 Preliminaries

2.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a structure (X, D, V, S). Here, X =
{X1, X2, . . ., Xn} is a set of variables that may take on values from a set
of domains D = {D1, D2, . . ., Dn}, and V = {V1, V2, . . . , Vm} is a family of
ordered subsets of X called constraint schemes. Each Vi = {Xi1 , Xi2 , . . . , Xiri

}
is associated with a set of tuples Si ⊆ Di1 ×Di2 × . . . ×Diri

called constraint
instance, and S = {S1, S2, . . . , Sm} is a family of such constraint instances.
Together, an ordered pair (Vi, Si) is a constraint or relation which permits the
variables in Vi to take only value combinations in Si.

Let (X, D, V, S) be a CSP, VK = {Xk1
, Xk2

, . . ., Xkl
} a subset of X . A

tuple (xk1
, xk2

, . . ., xkl
) in Dk1

× Dk2
× . . . × Dkl

is called an instantiation
of variables in VK . An instantiation is said to be consistent if it satisfies all
constraints restricted in VK . A consistent instantiation of all variables in X is
a solution to the CSP (X, D, V, S). The task of solving a CSP is to find one or
more solutions.

A constraint (Vh, Sh) in a CSP (X, D, V, S) is minimal if every tuple in Sh

can be extended to a solution. A CSP (X, D, V, S) is minimal if every constraint
is minimal.

A binary CSP is a CSP with unary and binary constraints only, that is, every
constraint scheme contains at most two variables. A CSP with constraints not
limited to unary and binary is referred to as a general CSP.

We will also use some relational operators, specifically, join and projection.
Let Ci = (Vi, Si) and Cj = (Vj , Sj) be two constraints. The join of Ci and Cj is
a constraint denoted by Ci 1 Cj . The projection of Ci = (Vi, Si) on Vh ⊆ Vi is a
constraint denoted by ΠVh

(Ci). The projection of ti on Vh, denoted by ti[Vh], is
a tuple consisting of only the components of ti that correspond to variables in
Vh.

2.2 Graph Theory Background

In this section, we review some graph theoretic terms we will need later and we
define constraint representative graphs, namely, the line graph, the join graph,
and the ω-graph.

A graph G is a structure (V, E), where V is a set of nodes and E is a set of
edges, with each edge joining one node to another.

A subgraph of G induced by V ′ ⊂ V is a graph (V ′, E′) where E′ ⊂ E contains
all edges that have both their endpoints in V ′. A partial graph of G induced by
E′ ⊂ E is a graph (V, E′).

A path or a chain is a sequence of edges E1, E2, . . . , Eq such that each Ei

shares one of its endpoints with Ei−1 and the other with Ei+1. A cycle is a chain
such that no edge appears twice in the sequence, and the two endpoints of the
chain are the same node. A graph is connected if it contains a chain for each pair

of nodes. A connected component of a graph is a connected subgraph. A graph
is acyclic if it contains no cycle. A connected acyclic graph is a tree.

Let G = (V, E) be a connected graph. A node Vi is called a cut node (or
articulation node) if the subgraph induced by V −{Vi} is not connected. A block
(or nonseparable component) of a graph is a connected component that contains
no cut nodes of its own. An O(|E|) algorithm exits for finding all the blocks and
cut nodes [11].

Let G = (V, E) be a connected graph. The degree of cyclicity of G is defined
as the number of nodes in its largest block. A graph is k-cyclic if its degree of
cyclicity is at most k.

A hypergraph is a graph with hyper edges; that is, an edge in a hypergraph
may contain more than two nodes. The graph notations reviewed above can
be extended to hypergraph, such as sub-hypergraph, partial hypergraph, path,
connected component, block, and so on. These definitions can be found in [2].

A graph G = (V, E) can be decomposed into a tree of blocks TB = (VB , EB):
1) choose a block VBi

∈ VB , which contains at least one non-cut node, as the
root node of TB and mark it; 2) for each unmarked block XBj

that has a node
in common with block XBi

, connect XBj
as a child node of XBi

with an edge
(XBi

, XBj
) and mark it; 3) take each child node of XBi

as the root node of a
subtree, repeat 2) and 3); 4) stop when every block is marked.

For example, give a graph G = (V, E) as shown in Figure 1 (A), we can have
a block tree as in Figure 1 (B), where B1 = {V1, V2, V3, V4}, B2 = {V2, V5, V6},
B3 = {V5, V7, V8}, B4 = {V6, V9, V10}, B5 = {V3, V11, V12}, B6 = {V3, V13, V14},
B7 = {V4, V15, V16}. The cut nodes in this graph are V2, V3, V4, V5, and V6

A block tree determines an order on the block set. For example, block set
B = {B1, B2, B3, B4, B5, B6, B7} is in the depth-first order. For each block Bk

(2 ≤ k) there is a cut node Vak
of the graph that separates this block from its

parent block, and there is a node Va1
in B1 which is not in any other blocks.

These nodes are called separating nodes. For example, the separating nodes of
the graph in Figure 1 (A) are V1, V2, V3, V4, V5, and V6

 V

 V

 V

 V

 V

 V

 V

 V

 V

 V V

 V

 V

 V

 V

 V

1

2

3

4

5

6 7

8

9

10

11

12 13

14

15

16

B3 B4

 B5 B6

 B7

B1

 B2

(A) A connected graph (B) A block tree

Fig. 1. A graph and its block tree

A binary CSP is associated with a simple constraint graph, which has been
well studied and widely used for analyzing and solving binary CSPs [13, 7, 5].
A general CSP is associated with a constraint hypergraph, but the topological
properties of the hypergraph have not been well studied in the area of constraint
satisfaction problems. Instead, constraint representative graphs such as the line
graph, the join graph, and the ω-graph have been studied and used to analyzing
and solving general CSPs [20, 19, 16, 24, 25, 26, 27].

Given a CSP (X, D, V, S) and its hypergraph H = (X, V), the line-graph
3 is a simple graph l(H) = (V, L) in which nodes in V are hyperedges of the
hypergraph and with two nodes joined with an edge in L if these two nodes
share common variables. A join graph j(H) = (V, J) is a partial linegraph in
which some redundant edges are removed. An edge in a linegraph is redundant
if the variables shared by its two end nodes are also shared by every nodes along
an alternative path between the two end nodes. An ω-graph ω(H) = (W, F)
is another constraint representative graph. The node set W of an ω-graph is a
subset of nodes V in the line graph such that any node in V −W is covered by
two nodes in W ; that is, if Vk ∈ V −W , then there exist Vi an Vj in V , such
that Vk ⊂ Vi ∪ V j. There is an edge joining two nodes if either the two nodes
share common variables or they cover a node that is not in W .

For example, given a hypergraph H = (X, V) as in Figure 2 (A) with node set
X = {X1,X2,X3,X4,X5,X6,X7} and edge set V = {V1,V2,V3,V4,V5,V6}, where
V1 = {X1, X2}, V2 = {X1, X4, X7}, V3 = {V2, V3}, V4 = {X2, X4, X7}, V5 =
{X3, X5, X7}, V6 = {X3, X6}. Its line graph l(H) = (V, L) is in Figure 2 (B).
There is an edge, for example, between V1 and V2 because these two nodes share a
common variable X1. Edge (V5, V6) is redundant because the variable X3 shared
by V5 and V6 is also shared by every nodes on an alternative path between V5 and
V6, that is, path (V5, V3, V6). A join graph resulting from removing redundant
edges is in Figure 2 (C), and an ω-graph is in (D) in which there is only 4 nodes,
since node V1 is covered by V2 and V4, and node V3 by V5 and V6.

Since constraint representative graphs are simple graphs, all of those graph
concepts mentioned previously are applicable. For example, an ω-graph (or a
join graph) is k-cyclic if the number of nodes in its largest block is at most k.
An ω-graph can be decomposed into a block tree.

Notice that the line graph or a join graph is also an ω-graph, but in general, an
ω-graph is simpler than the line or join graph in terms of the number of nodes, the
degree of cyclicity and the width. In particular, [22] gives an O(|V |3) algorithm
for constructing an ω-graph for a hypergraph with the following property:

Proposition 1. Given a hypergraph H = (X, V), there exists an ω-graph whose
degree of cyclicity is less than or equal the degree of cyclicity of any join graph.

Note that the degree of cyclicity of a hypergraph is defined in [16] as the
degree of cyclicity of its minimal join graph. The above proposition indicates
that a hypergraph has an ω-graph whose degree of cyclicity is less than or equal
that of the hypergraph.

3 A line graph is also called an inter graph in [19] and a dual-graph in [7].

 V6 V5

 V4

 V2

 V6

 V1 V3

 V5

 V4

 V2

 X1

 X4 X5

X7

X6

X2 X3

 (D) An -graph ω

 V6

 V1 V3

 V5

 V4

 V2

 (A) An hypergraph (B) The line graph

 (C) A join graph

Fig. 2. A hypergraph and its representative graphs

2.3 CSP Decomposition

Decomposition algorithms attempt to find solutions more efficiently by decom-
posing a CSP into a set of sub-CSPs such that these sub-CSPs form a tree
and the size of the largest sub-CSP is minimized. In general, a decomposition
algorithm works as follows:

1. decompose the constraint hypergraph into a tree;

2. find all solutions to each sub-CSP associated with each node in the tree;

3. form a new CSP where the original variable set in each tree node is taken as
a singleton variable;

4. find one solution to the new CSP.

Many decomposition algorithms have been developed [14, 16, 7, 4] and they
usually differ in the first step. A comparison of most notable decomposition algo-
rithms can be found in [14]. As pointed out in [14], each decomposition method
defines a parameter as a measure of cyclicity of the underlying constraint hyper-
graph such that, for a fixed number k, all CSPs with the parameter bounded by
k are solvable in polynomial time.

ω-graph fits well into this decomposition scheme in that we first construct an
ω-graph from a given constraint hypergraph and then decompose the ω-graph
into a tree. It is obvious that many graph decomposition methods can be used to
decompose an ω-graph. For simplicity, however, we choose the block tree method
to decompose ω-graphs in this paper.

The problem with the decomposition methods is that they cannot be ap-
plied if a given CSP does not possess some required properties (for example,

non-decomposible). Moreover, even if the underlying constraint graph is decom-
posable, finding all solutions for every sub-CSP is inefficient and unnecessary. In
the following, we propose a graph based backtracking algorithm called ω-CDBT
that overcomes these weaknesses.

3 ω-Graph Based Backtracking

Let (X, D, V, S) be a CSP and C = {Ci = (Vi, Si)|Vi ∈ V, Si ∈ S} a set of
constraints. Let ω(H) = (W, F) be an ω-graph and B = {B1, B2, . . . , Bl} a set of
blocks of ω(H) which is ordered in the depth-first manner according to the block
tree, and each block Bk = {Vk1

, Vk2
, . . . , Vk|Bk |

} a set of nodes in which the first

one is the separating node. Let cksa(Vi, Vj) denote the set of constraints on V−W

covered by Vi and Vj in W , that is, cksa(Vi, Vj) = {Vk ∈ V −W |Vk ⊂ Vi ∪ Vj}.
The idea of the ω-CDBT algorithm is to search for a consistent assignment to
variables involved in a block and then extend it to the child blocks. If at a block
where no consistent assignment can be found, ω-CDBT backtracks to the parent
block, reinstantiates variables in that block, and starts from there. Within a
block, ω-CDBT uses a CDBT-like strategy [23] to find a consistent assignment
to the variable subset in the block, which may involve backtracking within the
block. The algorithm stops when a solution is found or when it proves that no
solution exists.

3.1 Algorithm

The ω-CDBT performs backtrack at two nested levels which we call outer-BT
and inner-BT. The inner-BT finds a consistent instantiation of variables in-
volved in a block Bk = {Vk1

, Vk2
, . . ., Vk|Bk |

}. The outer-BT calls inner-BT to
find consistent instantiations for all blocks in the depth-first order. If a con-
sistent instantiation of variables in the current block is found then outer-BT
calls inner-BT again to find consistent instantiations of variables in its child
blocks; otherwise, the outer-BT moves backward to the parent block and calls
the inner-BT to find another consistent instantiation of variables in that block.

The function DFS corresponding to the outer-BT, the inner-BT, which is
based on CDBT [23], consisting of two recursive functions forward and goback,
and an auxiliary function test are given below. In these functions, some notations
are explained as follows: tupBk

is a consistent instantiation of variables in Bk;
solTk

is a consistent instantiation of variables in the subtree rooted at Bk; childBk

is a set of child blocks of Bk; changedBk
is a flag indicating if the instantiation

of variables in the separating node of Bk has changed; idxBk
is the index of

the separating node of Bk in the parent block; tBk
is a current instantiation of

variables in the separating node of Bk, initialized as a nil-tuple.

ω-DFS(Bk, VI , tupI)

1. begin

2. tupBk
← ω-forward(Bk , VI , tupI);

3. if tupBk
= ∅ then return ∅;

4. for each Bj ∈ childBk
do

5. if changedBj
then

6. solTj
← ω-DFS(Bj , Vj1 , tBj

);

7. if solTj
= unsatisfiable then return unsatisfiable;

8. if solTj
= ∅ then

9. delete tBj
from Sj1 and S∗

j1
;

10. if Sj1 = ∅ then return unsatisfiable;

11. V ′ ← ∪
idxBj

−1

i=1 Vki
; tup′ ← tupBk

[V ′];

12. return (ω-DFS(Bk, V ′, tup′));

13. changedBj
← false;

14. end for

15. return tupBk
1 (1Bj∈childBk

solTj
);

16. end

forward(Bk , VI , tupI)

1. begin

2. if VI = ∪Bk then return tupI ;

3. cks(VI+1)← ∪i
j=1cksa(Vkj

, Vki+1
);

4. S∗

ki+1
← {tup|tup ∈ Ski+1

, tup[VI ∩ Vki+1
] = tupI [VI ∩ Vki+1

]};

5. while S∗

ki+1
6= ∅ do

6. tup← one tuple taken from S∗

ki+1
;

7. tupI+1 ← tupI 1 tup;

8. if test(tupI+1, cks(VI+1)) then

9. for each Bj ∈ childBk

10. if Vki+1
∈ Bj and tup 6= tBj

then tBj
← tup; changedBj

← true;

11. return forward(Bk , VI+1, tupI+1);

12. end while

13. return goback(Bk , VI , tupI);

14. end

goback(Bk , VI , tupI)

1. begin

2. if VI = Vk1
then return ∅;

3. while S∗

i 6= ∅ do

4. tup← one tuple taken from S∗

i ;

5. tupI ← tupI−1 1 tup;

6. if test(tupI , cks(VI)) then

7. for each Bj ∈ childBk

8. if Vki+1
∈ Bj and tup 6= tBj

then tBj
← tup; changedBj

← true;

9. return forward(Bk , VI , tupI);

10. end while

11. return goback(Bk , VI−1, tupI−1);

12. end

test(tupI , cks))

1. begin

2. for each Ch = (Vh, Sh) in cks do

3. if tupI [Vh] 6∈ Sh then return false;

4. return true;

5. end

For a current block Bk = {Vk1
, Vk2

, . . . , Vk|Bk |
} and a partial instantiation

tupI of variables in VI = ∪i
j=1Vkj

, DFS tries to extend tupI to a consistent in-
stantiation solTk

of variables involved in the subtree rooted at Bk. Firstly, it tries
to extend tupI to a consistent instantiation tupBk

of variables in VBk
. This can

be done by function forward. If forward succeeds, that is, if a consistent instan-
tiation tupBk

is found, then DFS moves forward to those of its child blocks that
have not been instantiated at all or their instantiations have been changed due
to backtracking to the parent block. DFS calls itself recursively for each of the
subtrees, and then returns the joined tuple tupBk

1 (1Bj∈childBk
solTj

). If for-
ward fails, that is, if it does not find a consistent instantiation tupBk

of variables
in VBk

such that tupBk
[Vk1

] = tupk1
, then DFS reports that the tuple tupk1

has
no consistent extension to variables in VBk

. Before the algorithm backtracks to
the parent block, the tuple tupk1

is deleted from Sk1
, since it will not be in any

solution which will be explained in Section 3.3 and Sk1
is checked if it is empty.

If it is empty then there is no solution to the problem, so DFS stops and reports
unsatisfiable. If Sk1

is not empty then DFS moves up to the parent block and
starts from there.

Within block Bk, suppose that we have already found a consistent instantia-
tion tupI of variables in Vk1

, Vk2
, . . . , Vki

(their union is denoted by VI), function
forward extends this instantiation by appending to it an instantiation of vari-
ables in Vki+1

which is a node in the ω-graph. forward chooses a tuple tup from
S∗

ki+1
as an instantiation of variables in Vki+1

and joins tup and tupI to form
a new tuple tupI+1, which is tested to see if it is consistent. Notice that the
subset S∗

ki+1
contains those tuples in Ski+1

that are compatible with tupI . If
tupI+1 is consistent, then forward is called recursively to extend tupI+1; oth-
erwise, another tuple from S∗

ki+1
is tried. If no tuples are left in S∗

ki+1
, goback

is called to re-instantiate variables in variable set Vki
. Function goback tries to

re-instantiate variables in Vki
and to form another consistent instantiation of

variables in VI = ∪i
j=1Vkj

. It first chooses another tuple from S∗

ki
and forms a

new tuple tupI which is tested to see if it is consistent. If tupI is consistent, then
forward is called to extend tupI ; otherwise, another tuple from S∗

ki
is tried. If S∗

ki

is empty, then goback is called recursively to re-instantiate variables in variable
set Vki−1

. Note that goback does not re-instantiate variables in the separating
node Vk1

. The tuple tBk
for variables in Vk1

was chosen when the parent block

was dealt with. If tBk
cannot be extended to variables in Bk, goback returns ∅

and passes the control to DFS which deletes tBk
from Sk1

. Backtracking across
blocks occurs.

Function test(tupK , cks) returns true if tuple tupK satisfies all the constraints
in cks, and false otherwise.

To find a solution to a given CSP IP = (X, D, V, S), we need a main program
such as the one given below to call DFS repeatedly until a solution is found or
unsatisfiability is verified.

ω-CDBT(IP , sol)

1. begin

2. for each tup ∈ S11
do

3. sol ← DFS(Bk1
, Vk1

, tup);

4. if sol = unsatisfiable then return unsatisfiable;

5. if sol 6= ∅ then return sol;

6. end for

7. return unsatisfiable;

8. end

Algorithm DFS instantiates the variables in block Bj only if the values as-
signed to the variables in the separating node of Bj have been changed; that is,
only if changedBj

is true (line 5 in the algorithm). At the first time of visiting
Bj , changedBj

is true since the variables in the separating nodes have been in-
stantiated when the algorithm visits Bk, the parent block of Bj . However, when
the algorithm goes back to re-instantiates the variables in Bk, the variables in
the separating node may not be affected, in which case the assignment to the
variables in Bj will be retained. Needless to say, this saves time of repeatedly
finding values for the variables in the subtree rooted at Bj . However, an imme-
diate question to ask is whether this causes the algorithm to miss any solutions.
The answer is no because even if the algorithm does re-instantiate variables in
Bj , the instantiation will be the same if the values assigned to the variables in
the separating node of Bj have not been changed.

3.2 Example

We consider a CSP IP = (X, D, V, S) which has an ω-graph in Figure 1 (A) and
we use this example to illustrate how the ω-graph based backtracking works.

We are given an ordered block set B = {B1, B2, B3, B4, B5, B6, B7}, where
each block is an ordered set of constraint schemes, that is: B1 = {V1, V2, V3, V4},
B2 = {V2, V5, V6}, B3 = {V5, V7, V8}, B4 = {V6, V9, V10}, B5 = {V3, V11, V12},
B6 = {V3, V13, V14}, B7 = {V4, V15, V16}. Let VBi

be the subset of variables
involved in Bi.

We start from ω-CDBT(IP , sol), choose a tuple tB1
∈ S1 and call DFS(B1, V1, tB1

).
DFS first calls forward(B1 , V1, tB1

) to extend tB1
to variables in VB1

. If it fails,
then it will choose another tuple from S1 and start again. Suppose that it suc-
ceeds and it returns a tuple tupB1

as a consistent instantiation of variables in

VB1
, then DFS will be called recursively for each child block B2, B5, B6 and B7.

Recall that tBi
is the instantiation of variables in the separating node. For the

first child block B2, DFS(B2, V2, tB2
) is called to extend tB2

to variables involved
in the subtree rooted at B2, which include the variables in V5, V6, V7, V8, V9 and
V10. At first, forward(B2 , V2, tB2

) is called to extend tB2
to variables in V5 and

V6. Suppose that it succeeds and it returns a tuple tupB2
as a consistent in-

stantiation of variables in VB2
, then DFS will be called for the child blocks of

B2. Again, suppose that they all succeeds, that is, tuples solT3
and solT4

are re-
turned. So, DFS(B2, V2, tupV2

) returns a tuple solT2
= solB2

1 solT2
1 solT4

as
a consistent instantiation of variables involved in the subtree rooted at B2. For
the second child block B5, DFS(B5, V3, tB5

) is called to extend tB5
to variables

involved in the subtree rooted at B5. It calls forward(B5, V3, tB5
) to extend tB5

to variables in VB5
. If it succeeds, then DFS(B5, V3, tB5

) will return a tuple solT5
.

However, suppose that forward(B5, V3, tB5
) fails, which means that tB5

cannot be
extended to a consistent instantiation of variables in B5, then DFS(B5, V3, tB5

)
returns solT5

which is a nil-tuple. Since solT5
is empty, tuple tB5

is deleted
from S3, and S3 is checked to determine if it is empty now. If it is, then there
is no solution to the problem, DFS(B1, V1, tB1

) will return unsatisfiable and
CDBT(IP , sol) will return unsatisfiable. We suppose that S3 is not empty. Then
DFS(B1, V

′, tup′) is called, where V ′ = V1 ∪ V2 and tup′ = tupV1
1 tupV2

. This
time, forward(B1, V

′, tup′) is called to extend tup′ to a consistent instantiation
of variables in VB1

. If it finds one without re-instantiating variables in V2 and
V1, then the instantiation of variables involved in the subtree rooted at B2 is
retained, and DFS is called for child nodes B5, B6, B7. If variables in V2 are re-
instantiated, then the variables involved in the subtree rooted at B2 may have
to be re-instantiated. However, whether or not variables in VB3

and VB5
need

to be re-instantiated depends on whether or not V5 and V6 are re-instantiated.
If forward(B1, V

′, tup′) goes back to V1, then DFS(B1, V
′, tup′) returns empty

tuple, we will choose another tuple from S1 and start from there.

3.3 Analysis

For analysis, we define minimal constraint and give a few technical lemmas,
which have been proven in [22].

Let IP = (X, D, V, S) be a CSP and C = {Ci = (Vi, Si)|Vi ∈ V, Si ∈ S} a set
of constraints. Let H = (X, V) be the associated hypergraph, ω(H) = (W, F) an
ω-graph, B = {B1, B2, . . . , Bl} a set of blocks ordered in the depth-first manner,
and A = {Va1

, Va2
, . . . , Val

} a set of separating nodes. Let VBi
denote the subset

of variables involved in block Bi.

Definition 2. Let (X, D, V, S) be a CSP, let V ′ be a subset of V and C ′ a subset
of C restricted on V ′. A sub-CSP induced by V ′ is a CSP (X ′, D′, V ′, S′) where
X ′ =

⋃
V ′, D′ is a subset of the domains of variables in X ′, and S′ is a set

of constraint instances corresponding to V ′. A constraint Ci ∈ C ′ is said to be
minimal relative to (X ′, D′, V ′, S′) if every tuple in Si can be extended to a
consistent instantiation of variables in X ′. A constraint Ci ∈ C is said to be

minimal if it is minimal relative to (X, D, V, S). A CSP is said to be minimal if
every constraint is minimal.

Let CA = {(Vai
, Sai

)|Vai
∈ A} be a subset of constraints on A.

Lemma3. If every constraint in CA is minimal, then every consistent instan-
tiation of variables involved in each block can be extended to a solution.

This lemma suggests that if every constraint on those articulation nodes is
minimal, then the relation represented by the sub-CSP corresponding to each
block is minimal. The following lemma indicates that minimizing the constraints
on articulation nodes can be done by minimizing them relative to each block.

Lemma4. If every constraint (Vai
, Sai

) in CA is minimal relative to the sub-
CSP induced by the block to which Vai

belongs, then they are also minimal.

Lemma5. Let Bi be a block and Vai
the separating node. If a tuple in Sai

has no
consistent extension to variables in VBi

, then it cannot be extended to a solution.

Based on this lemma, if a tuple in a constraint corresponding to an articu-
lation node has no consistent extension to the variables involved in the block to
which the articulation node belongs, it can be safely deleted. If every tuple in
such a constraint is so, then there is no solution to the problem.

Lemma6. Let Bi be the parent block of Bj , and Vaj
the separating node in

Bj . Let tupBi
and tupBj

be consistent instantiations of variable in VBi
and

VBj
respectively. If tupBi

[Vaj
] = tupBj

[Vaj
], then tupBi

1 tupBj
is a consistent

instantiation of variables VBi
∪ VBj

.

This lemma suggests that if we have a consistent instantiation tupBi
of vari-

ables in a parent block Bi, extending tupBi
to the variables in the child block

Bj can be done by extending tupBi
[Vaj

] to the variables in Bj , so the consistent
checking is restricted within the child block.

Theorem7. The ω-CDBT is correct.

Proof. We prove that ω-CDBT is sound, complete, and it terminates. The
CDBT algorithm has been proven to be correct in [23], the inner-BT consisting
of forward and goback is correct with respect to each block.

Based on Lemma 6, when a consistent instantiation of variables in the parent
blocks is extended to a child block, the new instantiation to variables including
variables in the child block is consistent. In particular, when a consistent instan-
tiation is successfully extended to variables in the last block, we have a whole
assignment which is a solution. This proves the soundness.

The completeness follows from Lemma 5 and the fact that the inner-BT is
complete.

The search space of ω-CDBT can be seen as a |W |-level tree, in which each
level corresponds to a Vi ∈ W , and ω-CDBT visits every node in the search

space at most once, it terminates. 2

Suppose that the ω-graph is k-cyclic and has l blocks. Let |s| be the size of
the maximal constraint relations.

Lemma 8. If every constraint in CA is minimal, then any backtracking per-
formed in ω-CDBT is restricted within each block, and the complexity of using
ω-CDBT to solve a CSP with minimum constraints in CA is O(l|s|k).

Proof. Suppose that the algorithm has found a consistent instantiation of vari-
ables in VBi

and it moves forward to a child block Bj . Finding a consistent
instantiation of variables in VBj

may require backtracking but it will not back-
track to the parent block Bi, since, according to Lemma 3, the existing consistent
instantiation of variables in VBi

can be extended to a solution.
The time complexity of finding a consistent instantiation of variables involved

in a block is O(|s|k), and there are l blocks, so the time complexity of ω-CDBT
is O(l|s|k). 2

Theorem 9. The time complexity of ω-CDBT is O(l|s|k).

Proof. Based on the Lemma 4, minimizing constraints in CA can be done by
minimizing them relative to each block. The complexity of minimizing a con-
straint relative to a block is O(|s|k), so the complexity of minimizing constraints
in CA is O(l|s|k). In the worst case (that is equivalent to using ω-CDBT to find
all solutions), every constraint in CA will be minimized, which takes O(l|s|k)
time, and then finding solutions with minimized constraint in CA takes another
O(l|s|k) time. Together, the time complexity of ω-CDBT is O(l|s|k). 2

Since the complexity of solving the CSP by using ω-CDBT is exponential in
k, a class of CSP where k is less than a fixed number is ω-CDBT solvable in
polynomial time. Following directly from Proposition 1, this class of tractable
CSPs includes the class of CSPs solvable by the hinge decomposition [16].

4 Comparison with Decomposition and Other Search

Methods

A general decomposition scheme is given in Section 2.3 and an ω-graph based
decomposition algorithm can be easily constructed. To compare ω-CDBT with
decomposition algorithms including ω-graph based decomposition, we argue that
ω-CDBT shares the virtue of tree search algorithms in that it finds only one
consistent assignment to variables in each block which corresponding to a sub-
CSP in the decomposition scheme. Finding one solution is more cost-effective
than finding all solutions.

Furthermore, the ω-CDBT algorithm has an additional two advantages over
other search methods: 1) when a tuple tBi

cannot be extended to a consistent in-
stantiation of variables in VBi

, it is deleted from the constraint on the separating

node of Bi; then all the sub-regions of search space rooted at nodes containing
tBi

will be ruled out to avoid further exploration; 2) when the algorithm back-
tracks from a child block to the parent, the instantiation of the variables in the
sibling blocks preceding this block may be retained, so that this sub-region of
the search space does not need to be searched repetitively.

Another advantage of ω-CDBT is its ability to overcome the failure of de-
composition methods when a given CSP is not decomposable. In this case, the
decomposition method degenerates into whatever method is used to find all solu-
tions which is expensive. ω-CDBT, on the other hand, degenerates to the original
CDBT algorithm which is still a practical CSP solving algorithm.

5 Conclusion

Constraint satisfaction in its general form is known to be NP-complete, yet many
CSPs are tractable and can be solved efficiently. Every CSP has an associated
constraint graph. The key idea is that the efficiency of finding a solution can be
improved by exploiting structural properties of the constraint graph. The contri-
butions of this paper are both theoretical and practical. First, we have identified
a new tractable class of CSPs that contains previously identified tractable classes.
This extends the known set of CSPs that are solvable in polynomial time. Sec-
ond, we have provided an algorithm that solves CSPs in this class in polynomial
time, whereas other known algorithms cannot guarantee polynomial time solu-
tions for this class. Third, even outside of this class, the provided algorithm has
a better worst case complexity. This extends the limits of what is solvable in
practice. Future empirical study is required to evaulate the actual improvement
of the ω-CDBT algorithm against other decompostion and search algorithms.

References

1. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. J. ACM, 30(3):497–513, 1983.

2. C. Berge. Graphs and Hypergraphs. North-Holland, New York, 1973.
3. M. Cooper, D. A. Cohen, and P. G. Jeavons. Characterizing tractable constraints.

Artificial Intelligence, 65:347–361, 1994.
4. R. Dechter. Enhancement schemes for constraint processing: backjumping, learn-

ing, and cutset decomposition. Artificial Intelligence, 41:273–312, 1990.
5. R. Dechter. Constraint networks. In S. C. Shapiro, editor, Encyclopedia of Artifi-

cial Intelligence, volume 1, pages 276–285. Wiley-Interscience, 2nd edition, 1992.
6. R. Dechter. From local to global consistency. Artificial Intelligence, 55:87–102,

1992.
7. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intel-

ligence, 38:353–366, 1989.
8. R. Dechter and J. Pearl. Directed constraint networks: A relational framework for

causal modeling. In Proceedings of IJCAI-91, pages 1164–1170, Sydney, Australia,
1991.

9. R. Dechter and P. van Beek. Local and global relational consistency. In Proceed-
ings of the 1st International Conference on Principles and Practices of Constraint
Programming, pages 240–257, Cassis, France, September 1995.

10. Y. Deville and P. Van Hentenryck. An efficient arc consistency algorithm for a
class of CSPs. In Proceedings of IJCAI-91, pages 325–330, Sydney, Australia,
1991.

11. S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland, 1979.
12. E. Freuder. A sufficient condition for backtrack-free search. J. of the ACM,

29(1):25–32, 1982.
13. E. Freuder. Backtrack-free and backtrack-bounded search. In L. Kanal and

V. Kumar, editors, Search in Artificial Intelligence, pages 343–369. Springer-
Verlag, New York, 1988.

14. G. Gottlob. A comparison of structural CSP decomposition methods. Artificial
Intelligence, 124:243–282, 2000.

15. M. Gyssens. On the complexity of join dependencies. ACM Transactions on
Database Systems, 11(1):81–108, 1986.

16. M. Gyssens, P. Jeavons, and D. Cohen. Decomposing constraint satisfaction prob-
lems using database techniques. Artificial Intelligence, 66:57–89, 1994.

17. P. Jeavons. Tractable constraints on ordered domains. Artificial Intelligence,
79:327–339, 1995.

18. P. Jeavons, D. Cohen, and M. Gyssens. A test for tractability. In Lecture Notes
in Computer Science, volume 1118, pages 267–281, Cambridge, MA, 1996. CP’96.

19. P. Jegou. On some partial line graphs of a hypergraph and the associated matroid.
Discrete Mathematics, 111:333–344, 1993.

20. P. Jegou. On the consistency of general constraint satisfaction problems. In Pro-
ceedings of AAAI-93, pages 114–119, 1993.

21. L. M. Kirousis. Fast parallel constraint satisfaction. Artificial Intelligence, 64:174–
160, 1993.

22. W. Pang. Constraint Structure in Constraint Satisfaction Problems. PhD thesis,
University of Regina, Canada, 1998.

23. W. Pang and S. D. Goodwin. Constraint-directed backtracking. In The 10th Aus-
tralian Joint Conference on AI, pages 47–56, Perth, Western Australia, December
1997.

24. W. Pang and S. D. Goodwin. A revised sufficient condition for backtrack-free
search. In Proceedings of 10th Florida AI Research Symposium, pages 52–56, Day-
tona Beach, FL, May 1997.

25. W. Pang and S. D. Goodwin. Characterizing tractable CSPs. In The 12th Cana-
dian Conference on AI, pages 259–272, Vancouver, BC, Canada, June 1998.

26. W. Pang and S. D. Goodwin. Consistency in general CSPs. In The 6th Pacific
Rim International Conference on AI, pages 469–479, Melbourne, Australia, August
2000.

27. W. Pang and S. D. Goodwin. Binary representation for general CSPs. In Proceed-
ings of 14th Florida AI Research Symposium (FLAIRS-2001), Key West, FL, May
2001.

28. P. van Beek. On the minimality and decomposability of constraint networks. In
Proceedings of AAAI-92, pages 447–452, 1992.

29. P. van Beek and R. Dechter. On the minimality and global consistency of row-
convex constraint networks. Journal of the ACM, 42:543–561, 1995.

